
Scott Klement and Yvonne Enselman

How Refactoring Helps
Bulletproof Your Application

What is
Refactoring
Restructuring computer
code, literally changing the
factoring, without changing
the external behavior.
Intended to improve the
software while preserving
the functionality.

Issues with these components indicate it is time to refactor

Has the code become so
outdated it doesn’t work.

Functionality

Modules fail to perform
as needed in all instances.

Reliability

Robustness

Compatibility

Usability

Maintainability

The process or code has
become hyper sensitive

Can not interact
properly with upgrades

Users find out a hinderance
not an asset when performing
tasks

The compost can’t be
altered or updated.

Code Smell - any characteristic in the source code of a program that may indicate a deeper problem

Scenario: Klement's Invoice Inquiry
• They would print invoices in a

daily batch process.
• Once printed, you could not

reprint an invoice -- you could
only look them up on the screen.

• I no longer have access to the
code, so I wrote a simpler
version to demonstrate

Motivation

• User dissatisfaction
• Programmer inability to deliver needed improvements
• Unacceptable time needed for modifications and maintenance
• Incompatible with required upgrades
• Issues with integration with other components on system
• Security concerns
• Outdated skill set needed to work on

What needs to be accomplished

• Improve readability and reduce complexity
• Improve performance
• Determine standardized micro-refactoring
• Possibly adopt automated testing
• Find hidden logic errors or bugs that have been

undiscovered

Users would send customer print screens
• Not all information fits on the screen, so they would require

multiple print screens.
• Some info is still cut off
• Customer was confused -- trying to piece together the right

info from multiple screen shots was difficult.
• Salespeople received complaints, rules were made that

accounting could not use this method.

Motivation For Change -- Example

The Problem
• Users would need to print

an invoice (without running
the full daily invoice run.)

• They'd do print screens and
send to customer
• But it takes multiple

screenshots
• Some info is cut off.

The problem with the example scenario

The Problem
• Second screen shows billing

info
• But notice the end of the

message is cut off.
• Some info is repeated
• Sales deemed this

"unacceptable to send to
customer"

• Accounting would type it onto
an invoice form using a
typewriter!

The problem with the example scenario

Solution!
• Once I discovered the problem, I changed

the "print screen" to print in an invoice
format

• Used:
• Ability to print with overlay

• Print to PDF

• Download via browser

The problem with the example scenario

Benefits

• Easier to fix bugs as more readable when troubleshooting
• Organization of monolithic routines to coherent modules
• Moving processes to more applicable classes
• Removing cumbersome or incorrect commenting
• Implementation of design patterns
• Extending the life of a system by bringing into the current

standards of the organization

Challenges

• Extraction of system information
• Software structure

o Data model
o Intra-application dependencies

o Team turnover without knowledge capture

• Unclear design decisions made previously
• Architecture of system can be changed
• Updating of HW or OS to use modern features

How Was the New Print Method Solved?
In our example, simply adding the the print screen would be
possible, but... all of the logic to calculate the invoice would
need to be repeated!

Logic was old and hard to follow. (My rewritten logic is
nowhere near as bad -- but there are still benefits.)

Benefits & Challenges -- Example

In our example, simply adding
the the print screen would be
possible, but... all of the logic
to calculate the invoice would
need to be repeated!

Logic was old and hard to
follow. (My rewritten logic is
nowhere near as bad -- but
there are still benefits.)

Benefits & Challenges -- Example
C Z-ADD SHIPPING SCSHIP
C Z-ADD TAX SCTAX

C INVNO SETLL INVDET
C INVNO READE INVDET 10
C *IN10 DOWEQ *OFF

.....C*0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq
C ITEMNO CHAIN ITEMMAS 10
C IMPRODUCT IFNE 'Y'
C MOVEL 'N' IMPRODUCT
C ENDIF
C 10 MOVEL *BLANKS IMPRODUCT

C MOVE ITEMNO SCITEMNO
C MOVE IMPRODUCT SCPRODUCT
C Z-ADD QTY SCQTY
C MOVE UOM SCUOM
C MOVEL DESCR SCDESCR
C Z-ADD PRICE SCPRICE
C Z-ADD WGTLBS SCWGTLBS
C PRICE MULT(H) QTY SCEXTN

C ADD SCEXTN SCSUBTOT
C ADD SCWGTLBS SCTOTWGT

C ADD 1 RRN2
C ADD 1 RRN3
C MOVE *ON *IN51
C WRITE INVINQ2S
C WRITE INVINQ3S

C INVNO READE INVDET 10
C ENDDO

• Code is now free-format
• Business logic is separated

into a different component
• Logic to load screen is

much cleaner/simpler
• Code can be reused from

printing program to print
GUI invoice

Benefits & Challenges -- Example

err = *blanks;

if invoice_getHeader(inp.INVNO
: %date(inp.CRTDATE6: *JOBRUN)
: INV) = FAIL;

err = INVOICE_getLastErr();
// Report Error To User

endif;

count = invoice_getDetail(INV.INVNO
: %date(INV.CRTDATE:*iso)
: det
: %elem(det));

if count = FAIL;
ERR = INVOICE_getLastErr();
// Report error to user

endif;

Testing
• How do I know my changes didn’t break something?

• How do I code so that I can make changes without breaking something?

o Well-defined interfaces

o Proper use of const/value

o Signatures on service programs

o Level checks on databases and using SQL or interfaces that will adapt to
changes

• Retesting

• Same thing as confirmation testing – only testing the bit you changed, vs retesting the whole system.

Interactive Program

Copybook with
prototypes and

structures of
business rules.

Service program
containing the

“model” (or
business logic)

Db2 for i (via
embedded SQL)

Print Screen to PDF
program

Use external definitions from
the database.
Make sure the data structure
is defined together with the
prototypes in the copybook!

Use CONST, OMIT, NOPASS.

Interface -- Example

dcl-ds INVHDR_t ext extname('INVHDR') qualified template end-ds;

dcl-ds INVOICE_HEADER_t qualified inz template;
INVNO like(INVHDR_t.INVNO);
CRTDATE like(INVHDR_t.CRTDATE);
CUSTNO like(INVHDR_t.CUSTNO);
DELDATE like(INVHDR_t.DELDATE);
INVDATE like(INVHDR_t.INVDATE);
PAIDDATE like(INVHDR_t.PAIDDATE);
CUSTPO like(INVHDR_t.CUSTPO);
PODATE like(INVHDR_t.PODATE);
DELNAME like(INVHDR_t.DELNAME);

.

. ...etc...

.

dcl-pr invoice_getHeader int(10);
invno like(INVHDR_t.INVNO) const;
crtdate date(*iso) const options(*omit:*nopass);
header likeds(INVOICE_HEADER_t) options(*omit:*nopass);

end-pr;

Caller uses the same DS,
same prototypes via the
copybook!

Calls existing business logic
rather than re-implementing
it in each program.

Interface -- Example

/copy invoice_h

.

.

dcl-ds hdr likeds(invoice_header_t) inz;

.

.

if invoice_getHeader(DSP1.INVNO: *omit: hdr) = FAIL;
DSP1.MSG = invoice_getLastErr();
// Handle error

endif;

Caller uses the same DS, same
prototypes via the copybook!

Calls existing business logic rather
than re-implementing it in each
program.

Only export needed routines.
Use the signature to control
whether callers do/don't need to be
recompiled/bound.

Interface -- Example

dcl-proc invoice_getHeader export;

dcl-pi *n int(10);
invno like(INVHDR_t.invno) const;
crtdate date(*iso) const options(*omit:*nopass);
header likeds(INVOICE_header_t) options(*omit:*nopass);

end-pi;

strpgmexp signature('INVOICE000000001')
export symbol(invoice_create)
export symbol(invoice_getHeader)
export symbol(invoice_getDetail)
export symbol(invoice_setHeader)
export symbol(invoice_setDetail)
export symbol(invoice_checkItem)
export symbol(invoice_checkPrice)
export symbol(invoice_save)
export symbol(invoice_markPaid)
export symbol(invoice_delete)
export symbol(invoice_print)
.
.
export symbol(invoice_getLastErr)

endpgmexp

Impact Analysis

• Communicate risk to stakeholders
• What documents and procedures need to be updated or

communicated
• What changes need to be made to the codebase
• Impact to the database
• Modernization and complexity factors

Forward compatibility

● Design software that can easily be upgraded to new OS functionality.

● After upgrade is NOT the time to learn that your software no longer works.

● You can’t make a change to your software that’s needed because it breaks

functionality.

● Can’t update to new OS because people don’t want to change the existing

programs – software is too hard to maintain.

The same techniques used
for encapsulation also
greatly improve impact
analysis:
• Code is not repeated
• Changes only in one place
• Test only in one place
• When making updates, we only

need to be concerned with
exported interfaces.

• CONST lets us know that
procedures won't change values.

Impact Analysis -- Example and Discussion

dcl-proc invoice_getHeader export;

dcl-pi *n int(10);
invno like(INVHDR_t.invno) const;
crtdate date(*iso) const options(*omit:*nopass);
header likeds(INVOICE_header_t) options(*omit:*nopass);

end-pi;

strpgmexp signature('INVOICE000000001')
export symbol(invoice_create)
export symbol(invoice_getHeader)
export symbol(invoice_getDetail)
export symbol(invoice_setHeader)
export symbol(invoice_setDetail)
export symbol(invoice_checkItem)
export symbol(invoice_checkPrice)
export symbol(invoice_save)
export symbol(invoice_markPaid)
export symbol(invoice_delete)
export symbol(invoice_print)
.
.
export symbol(invoice_getLastErr)

endpgmexp

